
Naval Research Laboratory
Washington, DC 20375-5000 r_.e

rr
NRL Report 9124 "

Design Changes in the Software
Cost-Reduction Project

L. J. CHMURA, A. F. NORCIO, AND T. J. WICINSKI

Human-Computer Interaction Laboratory
Information Technology Division

June 30, 1988

Approved for public release; distribution unlimited.

M

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 9124

6a NAME OF PERFORMING ORGANIZATION . OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Research Laboratory (If applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

8a. NAME OF FUNDING/SPONSORING jb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ~ ACCESSION NO.

61013N R1947
11. TITLE (Include Security Classification)

Design Changes in the Software Cost-Reduction Project

12. PERSONAL AUTHOR(S)
Chmura, L. J., Norcio, A. F., and Wicinski, T. J.

13a. TYPE OF REPORT 133b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Interiffi FROM 1/80 TO 12/87 1988 June 30 28

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software engineering Data analyses

Data collection SCR project

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents analyses of early design changes recorded on change report forms (CRFs) from the Software
Cost-Reduction (SCR) project at the Naval Research Laboratory. SCR engineers are redesigning the operational flight
program for the Navy's A-7E aircraft by using software engineering principles such as 'information hiding. The two
major goals are to demonstrate the effectiveness of these techniques in developing, for example, easy to change real-time
software and to provide high-quality development goals for other to follow. The first part of this report describes the
SCR development goals for others to follow. The first part of this report describes the SCR development effort and
examines how well it is meeting its goals. Results are presented as time-based trends and are compared to similar data
reported from other projects. The second part examines the time-based ratios between SCR change data and personnel
activity and the possible general use of these ratios as indicators of design progress. Two similar ratios are identified
that show promise as indicators of design incompleteness.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT I21. ABSTRACT SECURITY CLASSIFICATION
E UNCLASSIFIED/UNLIMITED [M SAME AS RPT. El DTIC USERS | UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
L. J. Chmura (202) 767-3249 Code 5533

DD Form 1473, JUN 86 Previous editions are obsolete.

1

SECU[RITY CL ASIPFICArTI(ON OF THIS PACF

4-.

CONTENTS

INTRODUCTION ... 1.................

Software Cost-Reduction Project 1
Software Technology Evaluation Project 1

COLLECTION OF CHANGE DATA 3

OVERVIEW OF EARLY SCR CHANGE DATA 5

General... 5
Ease of Change .. 9
Error Causes .. 13
Change Data Related to Personnel Activity Data 14

DATA ANALYSES .. 15

Date of Origin PIR 16
Date of Resolution PIR 16

RESULTS AND CONCLUSIONS 22

ACKNOWLEDGMENTS 23

REFERENCES 23

iii

DESIGN CHANGES IN THE SOFVIWARE COST-REDUCTION PROJECT

INTRODUCTION

This report presents analyses of early design changes proposed and made by software develop-
ment engineers working on the Software Cost-Reduction (SCR) project at the Naval Research Labora-
tory (NRL). The remainder of this section is an overview of NRL's SCR project and Software Tech-
nology Evaluation (STE) project. The second section describes the techniques and strategies that
were used in collecting and categorizing the data. The third section is a detailed discussion of the
change and error data. The final two sections contain the analyses of the data and their implications.

Software Cost-Reduction Project

Since 1978 the Naval Research Laboratory, in cooperation with the Naval Weapons Center, has
been redeveloping version 2 of the operational flight program for the A-7E aircraft [1]. Software
engineering techniques such as formal requirements specification [2], information hiding [3], abstract
interfaces [4], and cooperating sequential processes [5] are being used. This research effort is
referred to as the Software Cost-Reduction (SCR) project.

The goals of the project are to demonstrate the feasability of using selected software engineering
techniques in developing complex, real-time software and to provide a model for software design.
The claimed advantage of the selected software engineering techniques is that they facilitate the
development of software that is easy to change and maintain. Reference 1 provides a thorough over-
view of the SCR project and Ref. 6 is a complete discussion of the project's software requirements.
Reference 7 provides a detailed description of the module design structure. Figure 1 is an example of
a module interface specification (i.e., a design specification) taken from a recent version of the specif-
ication for the device interface module [8]. Reference 9 describes a standard organization for such
specifications.

The SCR project terminated at the end of 1987 after implementing three subsets of the opera-
tional flight program requirements. The subsets are being evaluated and tested by using ground-based
test facilities.

SCR project data have been collected in three areas: personnel activity [10], changes to require-
ments [11], and changes to design and code. This report is the first published analysis of SCR design
and code change data.

Software Technology Evaluation Project

The STE project is a separate research project from the SCR project in termsr of goals, staffing,
and funding.* The goal of the STE project is to evaluate alternative software development technolo-
gies. A major task of the STE project, therefore, is to provide the basis for an objective evaluation
of the methodology used in the SCR project.

*The project was at one time funded by the DoD STARS Program as Measurement Area Task G-06
Manuscript approved February 2, 1988.

1

Dl.VI: VISUAL INDICATORS (Auto-Cal and Non-Align Indicators)

S. Locri type definitions
VISiondacntrl

1. Introduction
There are two visual indicators controlled by the Oi'P on the A-7 aircraft; one that can, and

one that tannot, be seen by the pilot during fight. These are currently labeled "IMS Non-aligned" and
"Aut-C&i", respectively. Each can be on steady, on blinking, or off.

2. Interface overview

2.1. ACCESS PROGRAM TABLE
Propenm Parameter, Dscrinption Undesired events

+G/SAUTOCALJNDICATOR+ p1: VlSqjnd-entrl; 0/I I+Autocal+!
None

+S_AUTOCALiBLINICRATE+ pI: real: I blink/sec

+G/S'ONNALIGNJNDICATOR+ pi: VISjnd-entfl; 0/l !+Non-align+!

+SNONALIGNBI.iNKRATE+ pi: timeint; I !!rate!!

ffecets

+SAUTOCAil.NDICArOR+ iF pl=SO1 S TIEN 'Auto-Cal" indicator turned on; IF
pl=SOffS TIIEN "Auto-Cal" indicator turned off; IF
pl=SInwtrmittent* THEN "Auto-Cal" indicator turned on and
off at the rate set by +S At!TOCALiliNKRATE+, or at
the system dertailt rate.

+SAUITOCAl,-BlINKJATE-t+ When commanded to blink, the blink 11rate!! will be pI.

+SNON-AI.lGNiNDICATOR+ IF pl=sOs TIIEN "Non-Align" indicator turned on; IF
.I=S0ffS TIIEN "Non-Align" indicator turned off; IF

pl=SIntjermnilttS T IlEN "Non-Align" indicator turned on
and off at the rate set by
+S_N0NAlA.ICN_1.lINKRATE+, or at the system default
rate.

+SNONAIIGNJIINE'_RATri4+ VhIen colnmandced to blink, the Ilink !rate!! will be pi.

Enumerated: SOn$, SOnlS, ShntermittentS

4. Dictionary
!+Auto-cal+! The state of the auto-cal indicator -s last set by

+SAIUTOCAiJNDICATOR+.

l+Non-afign+! The state of the non-align indicator as last set by
+S_NONkAIlNiJNDICATOR+

t. Undelired event dictionaery None.

6. Syatezu generation paraineter.
#Autocal blink default#- Type: timeint. Default blink interval for "Auto-Cal" indicator.

#AutoCal init state# Type: NISind-cntrl. The system-load-time value for
!+Auto-cal+-.

#Nonslign blink defatult.#* Type: timeint. Default blink interval for "Non-Align" indica-
tor.

#Non-Align init state#u Type: Vlind.cntrl. The syitem-load-rime value for !+Non-
align+!.

DI.VI
' The *.s ot this sysrsm ge-sersli- psmoster mey bte t by ser .otw-e. S.- -ction 2.2 or the ijteoductios to this

d-o-amsL.

Fig. 1 - Example of module interface specification

tE

z
0
C_

z
0

C~t
E

Dl.VI

NRL REPORT 9124

The approach followed in the STE project is to monitor, evaluate, and compare software
development technologies used in different software projects. The monitoring and evaluating
processes consist of goal-directed data collection and analyses techniques [12].

COLLECTION OF CHANGE DATA

From 1980 until early 1985, SCR project engineers reported design and code problems, and
suggested design changes. They logged their modification activity to baselined (i.e., published and
change-controlled) interface specifications, pseudo code, and TC-2 codet on Change Report Forms
(CRFs). Figure 2 is an example of a completed CRF. There are two reasons for this procedure.
First, it is required by SCR project configuration management (CM) procedures. Second, such data
are needed by STE researchers for evaluating achievement of SCR project goals. The specific design
of the CRF form is based on a goal-directed data collection approach [13]. In 1985, the use of paper
CRFs was discontinued. Since then, SCR engineers have noted problems and proposed changes by
using a computer-based configuration management tool.

STE researchers have validated primarily those CRFs that have been resolved either by official
acceptance and incorporation into the baselined documentation or by official rejection of the proposed
change. Ideally, validation should be a continuing activity that occurs as CRFs are generated and
resolved. Validation of SCR CRFs, however, has tended to be an aperiodic activity in which large
groups of CRFs are validated at one time. The validation consists of a checking completeness, accu-
racy, etc. It often includes discussions with persons who submitted the CRFs, authors of affected
documents, and SCR CM personnel. A major validation point concerns what constitutes a design or
code change. A proposed change must be stated by a simple declarative sentence; the change
comprise alterations to one or more baselined interface specifications or implementation documents.
Basically, the view taken is that a change is conceptual. In addition, a change must have a unique
basis-error correction, adaption to outside change, improvement, or other (see Fig. 2). The basis
for this scheme follows the scheme developed by Swanson [14]. Thus, a change that is described in
one CRF similar to a change in a CRF resolved and implemented in earlier baselines (i.e., a change
that requires completion or correction to earlier baselined alterations) is a unique or new change. A
proposed change that is rejected obviously results in no alterations.

This definition of a design or code change can cause problems. Occasionally a CRF is submit-
ted that incorporates more than one change, and different engineers sometimes submit the same
change on different CRFs. For example, it is not unusual for a CRF to describe two conceptual
changes as:

"The last sentence of the description is ambiguous. Replace it with . . .
Note also that the word descriptor is misspelled."

A workable solution used by STE researchers for dealing with these situations is to split submitted
CRFs that incorporate more than one change into individual CRFs so that each CRF describes only
one change. Multiple CRFs that describe identical changes are consolidated into a single CRF. One
result of this policy is that a one-to-one correspondence does not exist between submitted CRFs and
validated CRFs. The other result of course, is that a one-to-one correspondence does exist between
proposed changes and validated CRFs.

Other sections of the CRF also cause difficulties. One difficulty is determining the basis of an
accepted' change. Another problem is that it is not sufficient to define an error as a discrepancy

tTC-2 code is the assembly language code for the IBM System 4 PI model TC-2 computer. The A-7E operational flight program runs on
this machine.

3

SCR PROJECT: DESIGN AND CODE CHANGE REPORT FORM

CR ID 22:

Date: I/ 4 i,0r/ Y3
- DcNtm(IV 5 a

ChangeDL~scriptumn [Ideitfy aU affected docwumantsA,,ersteruaand pages])

6(e-4A-, t3, 3 , 3JZ-

Effort for tderstarudig And Speci 7 a .W

.............
0 1 work hour I wrk day I work week I work month °°

What activity Led to diecowry of needfor change?

A Project Activity c
ADesign CtIA11 5 'C . ET C 2_ o

Pseudo Code
Code .-______________________
Module Test

Subset Test
- Miscellaneous

Non-Project Activity

CRiANG CIASFtCATON [tned In BY Origpneftr And Cbae n nginee.s]

Basis For OCange:

_ Correction of originA error
- orrectiz. or completion of earlier change. CRF-
Adaptation to requirements CRF , that is. a -
__ requirements error

expected requirements change
unexpected requirements changeI Adaptation to change in support environment

Improvement in -
performance

l clarity, or maintainability
Other

[m bhak side]

7 Feb A3

CIANcE a IsC ATfIO Ilnlead In By Originator And ClengeEngineers]

awige Aras: ([ark oil updated by change.]

- actual Input-output device. formats, or protocols
timing of system fumctions

- set of processes or their timing

- UE handling(M-ber) Bretinod %ottom-Levi Design modules qpdoted (LO) C 'IC
(NMmber) BIh isd Bottom-L ,Dsign inteTfoces Updated. (_._) ec, i

(nbor) Bmfnsed Dxmente Gpdate (,/) ec

MM C MICATIt [fl-ed In By Originator And Change Ingineers]

Avvor alkm(s):
- Clerical
- Designer or coder misunderstood --

- Requirements

- Interface specification
Pseudocode . _.

- Pseudocode language

- Programming environment

- Use hierarchy

- Other

- Other

elohn4ques Leodisg 7b &ror Discovery And Resolutison

RSOITMON tD [Filled In By Change Engineers]

Effort For Undervtwrd*ug And Specifyng Cange:

.... .. * :..
0 I work hour I work day I work week I work month 00

DSOt50TION [FIlIed In By Head Of Configuration Control]

A Accepted as described above.
Rejected because

situi C,. sscoData: / z IZ J /,, V3

Fig. 2 - Completed CRF form

Enginer:

n

z
0

z
E

,s" E C -/ 0 -Z-

Date: /Z fall 73

NRL REPORT 9124

between a specification and its implementation. For example, it is sometimes difficult to decide if a
CRF describes an inadequate interface design (i.e., an error) or if it simply describes a better design
(i.e., an improvement). The only reasonable solution to this problem has been to let SCR lead
engineers decide between these situations. A second problem is determining whether or not a change
is a correction or a completion of an earlier change that has already been baselined. The fact is, after
a long period of time or after many versions of a document, authors frequently forget earlier changes
that had addressed the same issues presented in current CRFs. For each of the CRFs reported in this
study, STE researchers have reviewed all versions of all documents baselined prior to resolution of
the CRF and discussed all questions with lead SCR engineers. This is a laborious process, but it is
necessary to ensure that corrections or completion errors are properly identified.

Finally, the SCR project's CM procedures are not perfect. Validators have found CRFs that
have not been resolved but, nevertheless, have been implemented in published specifications. The
only reasonable solution for this is to resolve these CRFs with the date of the latest issued baseline
specification and to submit additional CRFs for remaining aspects of the change. Validators have also
found modifications for which there were no corresponding CRFs. The policy for this has been to
submit CRFs and record them as immediately resolved with the date of issue of the baseline specifica-
tion.

OVERVIEW OF EARLY SCR CHANGE DATA

General

This study reports on 325 validated CRFs that were resolved before 1 January 1984. During
this period, engineers had submitted 424 CRFs. The 325 validated CRFs reported here map 296
(70%) of those submitted that were resolved by SCR CM personnel by this date. Figures 3 and 4 are
profiles of resolution activity for these proposed changes. By January 1984, -47,500 person hours
had been expended on the SCR project. The 400 hours of resolution effort accounted for - 1 % of
project activity. Table 1 shows the distribution of the CRFs categorized by the originators' activities
when the CRFs were generated. In addition, only 15% of SCR project hours were spent on pseudo
coding, coding, and testing activities. Thus, the changes reviewed here can be characterized as
changes that are typically proposed and made early in software development, which contrasts with
changes reported elsewhere [15-17].

T350

300

250

C
200 R

F
150 s

100

50

" 'i' I I I I I I I I I I I I I I I I I III I I I I I I 0
Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

I - By Origin Date - By Resolution Date

Fig. 3 - CRF accumulation

5

CHMURA, NORCIO, AND WICINSKI

Jan-81 Jan-82 Jan-83

Date of Resolution

Fig. 4 - Cumulative effort in resolving CRFs

Table 1-Activities Leading to CRF Origination

Project Activity Total Percentage
CRFs

Design
(e.g., module interface specification) 209 6

Pseudo code 53 16

Code 1 0

Test 26 8

Miscellaneous 15 5

Unknown 5 2

Total 309 95

Nonproject activity
(e.g., CRF validation) 16 5

Total 325 100

. 450

400

-- 350

300 H

250 U

.- 200 R
S

. 150

100

50

-- 0
Jan-84

Twenty-eight (9%) of the 325 proposed changes were rejected; this required - 18 hours (4%) of
the total hours expended on the changes (Figs. 5 and 6). The 9% figure is small compared to both
the 37% figure reported by Day [18] for major maintenance updates to an operational Army command
and control system and the 20% figure reported by Shooman and Bolsky [19] for errors discovered
and corrected during test and integration of a modest-size control program at Bell Telephone Labora-
tories. The 4% effort figure is comparable to the 3% figure reported in Ref. 18. Care must be taken
with these comparisons, however. These two figures are from different times in different project life
cycles, and it is not clear if there is a common definition of change. More importantly, SCR require-
ments changes are a separate SCR CM concern and are not incorporated in the data reported here
[11].

6

Jan-80

NRL REPORT 9124

|Total CRFs: 3251

Jan-81 Jan-82 Ja

Date of Resolution

Fig. 5 - Rejected CRFs: percentage of total

10

. 9

8

.7

6- '7

5 - 6
- S
- 4

- 3

- 2

I I I I I l l i 0
n-83 Jan-84

7

6

5

-84

3

2

-1-0

Jan-84Jan-81 Jan-82 Jan-83

Date of Resolution

Fig. 6 - Rejected CRF resolution effort: percentage of total

The remaining 297 accepted CRFs resulted in modifications to baselined items. Table 2 shows
the bases for these changes. None of the changes were the result of changes to the software require-
ments specification. This can probably be attributed to the following:

* an extensive requirements specification was generated prior to design [6],

* the requirements specification has been shown to be relatively error free and remarkably free
of ambiguities [11],

* as noted earlier, the changes reported are early changes, and

* the SCR project is redeveloping software for a fixed operational version of the A-7E flight
software.

7

Jan-80

0
F

T
0
T
A
L

0
F

T
0
T
A
L

Jan-80

I . I I . . I

CHMURA, NORCIO, AND WICINSKI

Table 2-Bases of Accepted CRFs

Total Percentage
CRFs

Error Corrections

Original 144 48

Continuation of completion 55 19

Total 199 67
Modifications

Adaption to requirements change 0 0

Adaption to support environment change 0 0

Improvement in performance 2 1

Improvement in clarity 89 30

Other 7 2

Total 98 33

Actually, all 297 changes required updates to only 47 baselined module interface specifications, most
of which are packaged in two documents. The primary reason for this is that no module implementa-
tion documents (which include pseudo code) were baselined before January 1984. In other words, the
297 changes can be considered to be early design' changes.

The percentage of error corrections (see Table 2 and Fig. 7) is high compared to data reported
for other development efforts [15,17,19], but this is decreasing. The proportion of total CRF effort
spent on error corrections (Fig. 8) contrasts sharply with the 17% figure reported by Lientz and
Swanson [20] for commercial data processing software maintenance efforts and the 21 % figure
reported by Day [18]. This percentage of error correction effort is also decreasing. Note again how-
ever, that SCR requirements document change data are not included in this summary.

Jan-80

90

. -80

- 70

_ - 60
50

40

30

20

10

- 0
Jan-84Jan-81 Jan-82 Jan-83

Date of Resolution

0
F

A
C
C
E
P
T
E
D

Fig. 7 - Error corrections: percentage of accepted changes

8

NRL REPORT 9124

| Total Char

.

[ge Effort: 382.8 hours|

Jan-82

Date of Resolution

Jan-83

C:-

90 >,

- 80 % Cl

. 70 -r

0
- 60 F rr

- 50 H

40 0
U

- 30 R
S

20

10

-0
Jan-84

Fig. 8 - Error correction effort: percentage of accepted CRF resolution effort

The proportion of error corrections that involve completing or correcting a prior change (Fig. 9)
is large compared to the 6% to 12% range of figures reported by others [15,17,21] and seems to be
incrementally increasing. The 12% figure is computed from data given by Weiss [21] and Weiss and
Basili [17]. This large proportion could be the result of the many hours spent by STE and SCR
engineers in assuring the correct identification of correction and completion errors.

ITotal Error Corrections: 1991

Jan-80 Jan-81 Jan-82 Jan-83

Date of Resolution

30 %

25 0
F

20
E

15 R
0

10 R
S

5

-t-4 0
Jan-84

Fig. 9 - Correction or completion errors: percentage of error corrections

Ease of Change

A major objective of the SCR project is to produce a software design, code, and documentation
set that can easily specify and implement changes. Figure 10 shows the distribution of effort required
for understanding and incorporating the 297 accepted changes into the SCR project's design and docu-
mentation set; Fig. 11 shows the distribution for error corrections only. Only one of the 28 rejected
CRFs was not implemented because the proposed change was considered to be not worth the effort.
Most changes (81%) took an hour or less to understand and resolve; 98% took a day (i.e., 8 person
.hours) or less. Eighty-six percent of the error corrections took an hour or less to understand and

9

Jan-80 Jan-81

CHMURA, NORCIO, AND WICINSKI

. 100

.. 90

e 80
. 70

60

. 50

. 40

. 30

.. 20

10

Ir4l''''1'1''l'['l' I

--80 Jan-81 Jan-82 Jan-83 Jan-

| Hour or Less x Hour <...< Day "z Day < ... < Week

Fig. 10- Accepted CRFs categorized by resolution effort

|Total: 199|

-80 Jan-81 Jan-82 Jan-83 Jan-E

Date of Resolution

- Hour or Less ^' Hour < ... < Day Day < ... < Week

84

100

90

80

70

60

50

40

30

20

10

0
84

0
F

T
0
T
A
L

0
F

T
0
T
A
L

Fig. 11 - Error corrections categorized by resolution effort

resolve; 99% took a day or less. Although the data shown in Figs. 10 and 11 exhibit downward
trends, these data suggest that SCR engineers are meeting their major objective of early changes and
error corrections. For errors uncovered and corrected late in the life cycle of a NASA/Goddard
Software Engineering Laboratory project, Basili and Perricone [15] report 36% of the error correc-
tions took an hour or less; 55% took a day or less. For errors uncovered and corrected late in the
WPADT project, Xu [22] reports 24% of the error corrections project took an hour or less. and 80%
took a day or less.

Figure 12 presents the cumulative average effort for all SCR changes and error corrections.
There seems to be a stepwise growth in cumulative average change effort as the SCR project life
cycle lengthens. This is consistent with Boehm's [27] data that show an exponential growth in cost to
fix or change software for successive phases of the software life cycle. In terms of this result, the
SCR project seems no different than other software development projects. Figure 13 presents the
effort for an error correction based on number of days that the error is in the system. The figure
"days in system" is the difference between CRF resolution date and the earliest issue date for the

10

Jan

Jan

NRL REPORT 9124

1.6

1.4

1.2

1 H
0

0.8 U
R

0.6 S

0.4

0.2

*0

Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

Date of Resolution

Fig. 12 - Cumulative average CRF effort

40

30

0 20
V)~~~~~~~~~E

10

R=0.07
M1 0 EX LSS] El l l

0 100 200 300 400

DAYS IN SYSTEM

Fig. 13 - Duration of an error in the system

11

CHMURA, NORCIO, AND WICINSKI

interface specifications containing the error. Boehm's data imply that the longer an error remains
undetected and uncorrected in a system, the greater the cost of the eventual error correction. Surpris-
ingly, this effect does not appear in the SCR data; the correlation between days in system and average
effort is 0.07. There may be four reasons for this. The first is that SCR requirements change data
are not included here. The second is that the changes reported here can be considered to be only
design-phase changes, and more of the SCR projects life cycle might have to pass before any relation-
ship appears. The third is that there are many very low effort changes. And the fourth is that the
SCR methodology lessens the impact of long-term unresolved errors!

The information-hiding principle is used in the SCR project for identifying and specifying
modules. A module is supposed to hide a likely changeable aspect of the A-7E flight software. This
means that a module's interface specification must be written such that the hidden information is not
revealed, that is, a module's hidden information is available only to the implementors of that module.
The anticipated result is that when an expected change occurs only one module implementation (i.e.,
no interface) needs modification. . Figure 14 presents the distribution for the number of modules -

updated by changes (i.e., the ripple effect of changes). A module is updated if its interface specifica-
tion (implementation document, or code) is updated. A change is considered to update zero modules
if updates are required in other documentation or in indexes and tables of contents associated with
packaged sets of module specifications. Most changes (90%) updated zero or one modules, and this
percentage is relatively constant. Figure 15 presents the proportion of changes that resulted in
module interface updates. A module interface is updated if a change to its specification (or imple-
mentation document, or code) causes or would have conceivably caused a change to programs of
other modules that use or would eventually use capabilities provided by the module. Examples of
interface updates are the modification of a parameter type and the addition of a system-generated
parameter. The percentage of changes that resulted in updated interface updates (56%) is growing.
The percentage of changes updating two or more interfaces (12%) is also growing. These trends
seem to suggest that a greater ripple effect and a more uniform distribution of change effort can be
expected in the future.

100

................. ,,, 90
80

70 %
60 o

.50 F

40I ~~~~~~~~~~~~~~~~~0T
30o

Total: 297 0 20 T

10 A
0 L

Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

Date of Resolution

- 0 , , I 2 A more than 2

12

Fig. 14 - Accepted CRFs categorized by number of modules changed

:ZF-
cll�
r-I
;Y.

en

r1r:
r) f=

NRL REPORT 9124

Jan-81 Jan-82 Jan-83

Date of Resolution

I - 0 1 2 '- more than 2

t 10

Jan-84

70

60

50

40

30

20 0
T
A
L

Fig. 15 - Accepted CRFs categorized by number of interfaces updated

Error Causes

Figure 16 shows the distribution of error causes. Thirty-three percent of the error corrections
are clerical, that is, they are characterized as likely to have been made when the material was being
typed. This percentage, which is growing, is large in comparison to other reported data, e.g., Basili
and Perricone [15]. Weiss [24], however, has reported a 36% figure for an earlier NRL software
project, the Architecture Research Facility.

The majority of errors (65%) have "other" causes. An examination of these causes shows that
engineers attributed the errors to failings on their part. Thus, this percentage is close to the 68% fig-
ure for programmer error reported by Ostrand and Weyuker [25].

Only two errors (1 %) were felt to be caused by poor SCR documentation! This contrasts to the
9% figure for poor documentation reported in Ref. 25. Either SCR engineers are reluctant to fault
their documentation, or their documentation is quite good, or they simply tend to blame themselves
for errors. The last 1 % of errors had unknown causes.

Jan-80 Jan-81 - Jan-82 Jan-83

Date of Resolution

I Clerical - Misunderstanding - Other Unknown I

I70

60

50 %

40 0
F

_ 30
T

20 0
T

10 A
L

Jan-84

Fig. 16 - Error causes: percentage of total

13

Jan-80

CHMURA, NORCIO, AND WICINSKI

Change Data Related to Personnel Activity Data

SCR project engineers report their activity weekly, using forms designed by software technology
evaluation (STE) researchers. Figure 17 shows the ratio of the cumulative changes uncovered during
a specific activity (i.e., design, code, and test) to the cumulative hours that were expended in that
activity. Figure 18 shows the ratio of cumulative hours for changes uncovered during an activity to
the cumulative activity hours. They show a similar pattern. Coding activity is the most "efficient"
way to uncover needed modifications and errors, followed closely by testing activity. This is true
only initially, however. In the long run, for the SCR project, design, code, and test activity are all
equally efficient in terms of uncovering changes. However, the amount of coding (6504.25 hours)
and testing (1487.5 hours) that accumulated by January 1984 is small compared to the amount of
design (21741.75 hours).

0.07

-., 0.06

0.05

0.04

0.03

an-80 Jan-81Jan-82Jan-83Jan-840.02
// -I- ~~~~~0.01

Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

|- Designing -'i Coding i- Testing

Jan

Fig. 17 - Ratio of cumulative CRFs over cumulative origination activity hours

0.07

0.06

0.05

0.04

\- ,...., ~~~~~~~~~~~~~~0.03, God ("'. 0.02

0.01

4,,4,4.,4,,-z z z A~ zz~4,- O-"" ~ I 0
-80 Jan-81 Jan-82 Jan-83 Jan-84

- Designing - Coding -"' Testing

Fig. 18 - Ratio of cumulative CRF resolution effort by
origination activity over cumulative activity hours

14

NRL REPORT 9124
rot

Figure 19 shows the proportion of error corrections for a project work month and the proportion
of implemented changes for a work month (i.e., 160 person hours). Although they appear to be
increasing, both ratios are small compared to the data reported by Weiss and Basili [17]. They report r

2 to 3 error corrections per work month and 4 to 8 changes per work month.

1.2

C
1R'F

5

0.8

~~~~
0.6 R

M
0.4 0

N
T

0.2 H

Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

Fig. 19 - Ratio of cumulative -error corrections and
accepted CRFs to cumulative project months

DATA ANALYSES

A previous study of SCR project activity data [10] has defined the Progress Indicator Ratio
(PIR). The PIR, which is a time-based ratio between a module's cumulative design discussing hours
and cumulative design creating hours, consistently correlates with total design hours for the module.
When the release dates for specification baselines are examined in conjunction with the PIR, the PIR
seems to indicate incompleteness of baseline specifications. The appearance of a baseline before the
PIR rises sharply or during a sharp rise seems to suggest that the baseline is probably far from com-
plete. Module interface specifications seem to become reasonably stable only when the PIR becomes
stable.

A major objection to the PIR is that it requires a data collection scheme that accurately captures
intricate information about personnel activity during the design process. Even though this seems pos-
sible [26], few software development efforts can readily afford and tolerate the collection operation.
Because many design efforts routinely record software change data, it would be desirable if informa-
tion provided by the PIR could also be provided by change data. Figure 17 suggests a possible use of
change data. Also, intuition suggests that a module's interface design would be unstable if people
who were working on that design were generating many CRFs against the current version of the
design or against the interface designs of other modules.

Table 3 lists some of the second-level modules of the multilevel hierarchy of information-hiding
modules resulting from the SCR design activity [7]. These modules have interface specifications that
have had one or more baselines, and each has been modified by one or more of the 325 CRFs. For
each of the modules, time-based ratios between the number of CRFs resulting from module design
activity and the cumulative module design hours can be computed and plotted. These are the Date of
Origin PIR (DOOPIR) and the Date of Resolution PIR (DORPIR), based on CRF date of origin and
resolution, respectively. Table 4 is a summary of the data underlying these ratios; specifically, they

15



CHMURA, NORCIO, AND WICINSKI

Table 3-Abbreviations and Names of
Second-Level Software Modules

Abbreviation Name

AT Applications Data Type

DI Device Interface

EC Extended Computer

FD Function Driver
Ss Shared Services

Table 4-Total CRFs and Design Hours
Through December 1983

Module CRFs Resulting Earliest CRF
from Design Date of Origin Design Hours

AT 2 Mar 81 1083.75

DI 11 Sept 80 2859.00

EC 119 Mar 81 7477.50

FD 27 Sept 80 1235.05

SS 6 Jan 81 1848.45

are the number of CRFs that resulted during design work on the module, the date of origin of the ear-
liest of these CRFs, and the total design hours for each module.

Date of Origin PIR

For each module, the DOOPIR is defined as the ratio between the cumulative CRFs uncovered
during design of the module by date of origin and cumulative design hours for the module. Figures
20 to 24 show DOOPIRs for each module. The vertical lines in these figures indicate issue dates for
module specification baselines. Table 5 shows Pearson product moment correlation coefficients r and
coefficients of determination r2 between DOOPIRs and the original PIRs for each module [271. The
time period over which correlations are computed begins with the date of origin of the earliest CRF,
as presented in Table 4.

Date of Resolution PIR

The DORPIR is the same DOOPIR except that CRF date of resolution is used rather than date
of origin. Figures 25 through 29 show DORPIRs for each module. Again, vertical lines indicate
baseline issue dates. Table 6 shows Pearson product moment correlation coefficients r and coeffi-
cients of determination r2 between DORPIRs and the original PIRs for each module [27]. The time
period over which correlations are computed is the same as for the DOOPIR. Even though the date
of resolution occurred after the date of origin, hours of resolution effort include origination time plus
subsequent change time.

16



NRL REPORT 9124

|TOTAL CRFs: 21

_____________________________________ I L

Jan-l
.- .- ..... [ [ rXr. I.....
80 Jan-81 Jan-82

Date of Origin

Fig. 20 - Date of origin PIR for AT

Jan-83

Jan-79 Jan-80 Jan-81 Jan-82 Jan-83

Date of Origin

Fig. 21 - Date of origin PIR for DI

Table 5-Pearson Correlation
Coefficients Between

DOOPIR and PIR

Module r r2

AT -0.610* 0.372*

DI 0.727 0.528

EC 0.985 0.970

FD -0.679 0.461

SS -0.478* 0.228*

*Not significant at the p 2 .05 level.

0.004

0.0035

-0.003

0.0025

_0.002

_ 0.0015

0.001

0.0005

.,-. 0
Jan-84

0.0045

_ 0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

.. 0
Jan-84

17

r--
:z

rr

~r
c:.

Jan-79Jan-78

Jan-78

. 1 . . . . ..r. . ..| rT r rT ............ ...........



CHMURA, NORCIO, AND WICINSKI

ITOTAL CRFs: 119|

Jan-79 Jan-80 Jan-81 Jan-82 Jan-83

Date of Origin

0.018

0.016

-0.014

-0.012

-0.01

0.008

0.006

0.004

0.002

_-0
Jan-84

Fig. 22 - Date of origin PIR for EC

ITOTAL CRFs: 27

Jan-79 Jan-80 Jan-81 Jan-82 Jan-83

Date of Origin

0.03

0.025

0.02

0.015

0.01

0.005

, 0
Jan-84

Fig. 23 - Date of origin PIR for FD

18

Jan-78

Jan-78



NRL REPORT 9124

0.0045

0.004

0.0035

0.003

0.0025

ITOTAL CRFs: 6 0.002

0.0015

0.001

0.0005

Jan-78 Jan-79 Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

Date of Origin

Fig. 24 - Date of origin PIR for SS

0.0025

0.002

0.0015

ITOTAL CRFs: 20.001

0.0005

111111111111111:: 11111111111::1111111;: 1111|11111111111111 11111 l--l---l- 
Jan-78 Jan-79 Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

Date of Resolution

Fig. 25 - Date of resolution PIR for AT

19



CHMURA, NORCIO, AND WICINSKI

|TOTAL CRFs: 11

Jan-79 Jan-80 Jan-81 Jan-82 Jan-83

Date of Resolution

0.0045

_ - 0.004

. -0.0035

-0.003

. -0.0025

- 0.002

0.0015

0.001

0.0005

- 0

Jan-84

Fig. 26 - Date of resolution PIR for DI

ITOTAL CRFS: 19

hi

NJ

... X .. :.l ......:1 . .I .. .I .I I- 1.4
Jan-80 Jan-81

Date of Resolution

Jan-82 Jan-83

0.018

0.016

. 0.014

--0.012

. -0.01

--0.008

- 0.006

0.004

0.002

0

Jan-84

Fig. 27 - Date of resolution PIR for EC

20

Jan-78

Jan-78 Jan-79



NRL REPORT 9124

TOTAL CRFs: 27

Jan-79 Jan-80 Jan-81 Jan-82 Jan-83

Date of Resolution

-- 4 0

Jan-84

Fig. 28 - Date of resolution PIR for FD

TOTAL CRFs: 6

Jan-79 Jan-80 Jan-81 Jan-82 Jan-83

Date of Resolution

0.0045

0.004

0.0035

0.003

0.0025

t 0.0015

0.001

0.0005

+-- 0

Jan-84

Fig. 29 - Date of resolution PIR for SS

Table 6-Pearson Correlation
Coefficients Between

DORPIR and PIR

Module r r2

AT 0.391* 0.152*

DI 0.698 0.487

EC 0.971 0.943

FD 0.709 0.503

SS -0.472* 0.223*

*Not significant at the p 2 .05 level.

21

0.03

C:

mA:
C-

rr
"r0.025

Jan-78

0.02

0.015

0.01

0.005

Jan-78



CHMURA, NORCIO, AND WICINSKI

RESULTS AND CONCLUSIONS

An overview of the SCR project's early change data with respect to customary concerns and a
time-based view shows these major patterns:

* There is a high proportion of error corrections and error correction effort, although time-
based plots of these statistics show that both are decreasing.

* The percentage of error corrections that involve completing or correcting a prior change is far
higher than has ever been reported, and this percentage is increasing.

* The percentage of changes that took a day or less to resolve is extremely large, but this is
decreasing. Consistent with this decrease is a stepwise growth in average change effort, a
growth in the percentage of changes that involve modifying module interfaces, and a growth
in the percentage of changes involving two or more module interfaces.

* Surprisingly, no relationship has been shown between change effort and number of days that
an error exists in the documentation.

* Very few errors have been attributed to poor project documentation.

* Coding activity, followed by testing activity, is the most efficient way of uncovering needed
modifications and error corrections. In the long run, however, design, code, and test activity
appear to be equally efficient.

Analyses of the design CRF data suggest that, in some cases, fairly simple change and personnel
activity data can be used as an alternative to the originally proposed PIR. The DOOPIRs and the
DORPIRs for modules with a significant number of design changes show a strong relationship to the
original PIRs. Ten CRFs can be considered a reasonable threshold for sensitivity. The DOOPIR
explains 52%, 97%, and 46% of the variation in the original PIRs for the DI, EC, and FD modules,
the DORPIR explains 49%, 94%, and 50% of the variations for these same modules.

When issue dates for published baselines are superimposed on the DOOPIR and DORPIR plots,
patterns similar to if not even more sensitive than those observed with the original PIR are observed.
For module designs that have been specified with only one or two baselines, a prior instability with
the DOOPIR and DORPIR, a downward trend, issuance of the baseline, and then relative stability are
seen. For other modules, this pattern is lacking one or more of the earlier baselines. In other words,
both the DOOPIR and the DORPIR appear to indicate incompleteness in the interface specifications.
If these ratios have not surged and then turned downwards prior to appearance of a baseline and sub-
sequently stabilized, the design of the module's interface probably is not complete, despite personnel
claims and published documents.

There are two drawbacks to the DOOPIR and DORPIR. They are later indicators of design
progress than the original PIR, and they are based heavily on the responsiveness and timeliness of a
project's change control process. If changes are not resolved promptly, the relationships between
these ratios and design progress are weakened.

Finally, we do not claim that the DOOPIR or the DORPIR are measures of the completeness of
an interface design. There may be many reasons why the ratios stabilize (e.g., personnel have been
assigned to another module) or have taken vacations. However, the ratios do seem to indicate when
work on an interface is not complete. If completion is claimed prior to a downward trend and subse-
quent stability, more work probably must be done.

22



NRL REPORT 9124

ACKNOWLEDGMENTS

We are especially indebted to Paul Clements, the lead SCR software engineer, who patiently
assisted CRF validators in resolving problems that were encountered. Also, to Ms. Kathryn Kragh
who for several years entered change and activity data into a computer database, checked the accuracy
of each entry, and updated everything when, for example, the names of modules changed. Without
her diligence, this report could not have been written.

REFERENCES

1. P.C. Clements, "Software Cost Reduction Through Disciplined Design," 1984 Review, Naval
Research Laboratory, pp. 79-87 (1985).

2. B. Meyer, "On Formalism in Specifications," IEEE Software 2(1), 6-27 (1985).

3. D.L. Parnas "On the Criteria to Be Used in Decomposing Systems into Modules," Commun.
ACM 15, 1053-1058 (1972).

4. D.L. Parnas, "Use of Abstract Interfaces in the Development of Software for Embedded Sys-
tems," NRL Report 8047, June 1977.

5. E.W. Dijkstra, "Cooperating Sequential Processes," in Programming Languages, F. Genuys,
ed. (Academic Press, New York, 1968), pp. 43-112.

6. K.L. Heninger, J.W. Kallander, J.E. Shore, D.L. Parnas, and Staff, "Software Requirements
for the A-7E Aircraft," NRL Memorandum Report 3876, Nov. 1978.

7. K.H. Britton and D.L. Parnas "A-7E Module Guide," NRL Memorandum Report 4702, Dec.
1981.

8. A. Parker, K.L. Heninger, D. Parnas, and J. Shore, "Abstract Interface Specifications .or the
A7-E Device Interface Module," NRL Memorandum Report 4385, Nov. 1980.

9. P.C. Clements, R.A. Parker, D.L. Parnas, and J. Shore, "A Standard Organization for Specify-
ing Abstract Interfaces" NRL Report 8815, June 1984.

10. A.F. Norcio and L.J. Chmura, "Design Activity in Developing Modules for Complex
Software," in Empirical Studies of Programmers, E. Soloway and S. Iyengar, eds. (Ablex Pub-
lishing Corporation, Norwood, New Jersey, 1986).

11. L.J. Chmura and D.M. Weiss, "The A-7E Software Requirements Document: Three Years of
Change Data," NRL Memorandum Report 4938, Nov. 1982.

12. V.R. Basili and D.M. Weiss "A Methodology for Collecting Valid Software Engineering
Data," IEEE Trans. Software Eng. SE-10(6), 728-738 (1984).

13. L.J. Chmura, "Proposed New Design and Code Change Report Form (CRF) for the Software
Cost Reduction (SCR) Project," NRL Technical Memorandum 7590-34:LC (1983).

14. E.B., Swanson, "The Dimensions of Maintenance," Proceedings of the Second International
Conference on Software Engineering, IEEE Computer Society, (1976), pp. 492497.

23



CHMURA, NORCIO, AND WICINSKI

15. V.R. Basili and B.T. Perricone, "Software Errors and Complexity: An Empirical Investiga-
tion," Commun. ACM 27, 42-52 (1984).

16. A. Endres, "An Analysis of Errors and Their Causes in System Programs," IEEE Trans.
Software Eng. SE-1(2), 140-149 (1975).

17. D.M. Weiss and V.R. Basili, "Evaluating Software Development by Analysis of Changes:
Some Data from the Software. Engineering Laboratory," IEEE Trans. Software Eng. SE-11(2),
157-168 (1985).

18. R. Day, "A History of Software Maintenance for a Complex U.S. Army Battlefield Automated
System," (1985), pp. 181-187.

19. M.L. Shooman and M.I. Bolsky, "Types, Distribution, and Test and Correction Times for Pro-
gramming Errors," Proceedings of the International Conference on Reliable Software, ACM
SIGPLAN Notices (1975), pp. 347-357.

20. B.R. Lientz, E.B. Swanson and G.E. Tompkins, "Characteristics of Application Software
Maintenance," Commun. ACM 21(6), 466-471 (1978).

21. D.M. Weiss, "A Comparison of Errors in Different Software-Development Environments,"
NRL Report 8598, July 1982.

22. R.Z. Xu, "An Empirical Investigation: Software Errors and Their Influence Upon Develop-
ment of WPADT," Proceedings of COMPSAC 85, IEEE Computer Society, pp. 4-8 (1985).

23. B.W. Boehm, Software Engineering Economics (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1981).

24. D.M. Weiss, "Evaluating Software Development by Error Analysis: The Data from Architec-
ture Research Facility," J. Systems Software 1(1), 57-70 (1979).

25. T.J. Ostrand and E.J. Weyuker, "Software Error Data Collection and Categorization,"
Engineering Workshop (1982).

26. L.J. Chmura and A.F. Norcio, "Accuracy of Software Activity Data: The Software Cost
Reduction Project," NRL Report 8780, Dec. 1983.

27. W.J. Dixon and F.J. Massey, Jr., Introduction to Statistical Analysis (McGraw-Hill Book Co.,
Inc., New York, 1969).

24


